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Language is inherently contextual.

• Words or characters in 
language are dependent upon 
one another!

• Sequence modeling allows 
us to make use of sequential 
information in language

• What are some ways we can 
model sequences?
• Language models
• Hidden Markov models
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Forward Algorithm
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Language 
Modeling
• Learning how to effectively 

predict the likelihood of 
word or character 
sequences in a language
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Why is language 
modeling useful?

• Helps identify words in noisy, ambiguous 
input

• Speech recognition or autocorrect
• Helps generate natural-sounding language

• Machine translation or image 
captioning

• In contemporary NLP, language modeling 
forms the basis of most approaches

• Language representation
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Language 
models 
come in 

many 
forms!



N-Grams

• Sequences of a predefined item type 
within a language

• N → Size of the sequence
• -gram → Greek-derived suffix meaning 

“what is written”
• First use of the term appears to be in the 

late 1940s
• A Mathematical Theory of Communication, 

by Claude Shannon: 
https://people.math.harvard.edu/~ctm/home/
text/others/shannon/entropy/entropy.pdf
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N-grams can be words, 
characters, or any other 
type of item in your 
language.
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N-grams are interesting! N-grams are interesting!



Special 
N-Grams

• Most higher-order (n>3) n-
grams are simply referred 
to using the value of n

• 4-gram
• 5-gram

• However, lower-order n-
grams are often referred to 
using special terms:

• Unigram (1-gram)
• Bigram (2-gram)
• Trigram (3-gram)

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

5-gram

4-gram

trigram

bigram

P(“spring”)

unigram
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N-Gram Language Models
• Goal: Predict P(word|history)

• P(“spring” | “I’m so excited to be taking CS 421 this”)
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P(“fall” | “I’m
 so 

excited to be taking 

CS 421 this”) P(“refrigerator” | “I’m
 so 

excited to be taking CS 

421 this”)

P(“and” | “I’m so excited to be taking CS 421 this”)
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Probabilities for n-gram 
language models come from 
corpus frequencies.
• Intuition:

1. Take a large corpus
2. Count the number of times you see the history
3. Count the number of times the specified word 

follows the history

P(“spring” | “I’m so excited to be taking CS 421 this”) 
= C(“I’m so excited to be taking CS 421 this spring”) / 
C(“I’m so excited to be taking CS 421 this”)
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However, we don’t necessarily want to 
consider our entire history.
• What if our history contains uncommon words?
• What if we have limited computing resources?

P(“spring” | “I’m so excited to be taking Natalie Parde’s CS 421 this”)

Out of all possible 11-word sequences on the web, how 
many are “I’m so excited to be taking Natalie Parde’s 
CS 421 this”?
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Better way of estimating P(word|history)

• Instead of computing the probability of a 
word given its entire history, 
approximate the history using the 
most recent few words.

• We do this using fixed-length n-grams.

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)
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N-gram 
models follow 
the Markov 
assumption.

• We can predict the probability of some future 
unit without looking too far into the past

• Bigram language model: Probability of a 
word depends only on the previous word

• Trigram language model: Probability of a 
word depends only on the two previous 
words

• N-gram language model: Probability of a 
word depends only on the n-1 previous 
words

Natalie Parde - UIC CS 421
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More formally….
• 𝑃 𝑤! 𝑤"!#" ≈ 𝑃(𝑤!|𝑤!#$%"!#" )
• We can then multiply these individual word probabilities together to get the 

probability of a word sequence
• 𝑃 𝑤"& ≈ ∏!'"

& 𝑃(𝑤!|𝑤!#$%"!#" )
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P(“Summer break is already over?”)

P(“over?” | “already”) * P(“already” | “is”) * 
P(“is” | “break”) * P(“break” | “Summer”)
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To compute n-
gram 
probabilities, 
we can use 
maximum 
likelihood 
estimation.
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

Natalie Parde - UIC CS 421 18



Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Frequency
<s> I 1
I am 1
am cold. 1
cold. </s> 3
… …
is Chicago. 1
Chicago. </s> 1
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

Natalie Parde - UIC CS 421

🤷
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We can 
learn a lot 
of useful 
things from 
n-gram 
statistics!



Which type of n-
gram is best?
• In general, the highest-order value of n that your data can 

support

• Sparsity increases with order, and sparse feature vectors are 
not very useful when training statistical models

• Make sure that your dataset is large enough to handle your 
selected n-gram size

• We can usually determine this by running experiments on the 
same data with different n-gram sizes and figuring out which 
size leads to the best results

• For a deep dive into statistical power in NLP experiments, 
check out the following paper:

• With Little Power Comes Great Responsibility, by Dallas 
Card et al.: https://aclanthology.org/2020.emnlp-
main.745/
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https://aclanthology.org/2020.emnlp-main.745/
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This 
Week’s 
Topics
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Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward 
Algorithm



We’ve learned 
how to build n-
gram language 
models, but 
how do we 
evaluate them?
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• Two types of evaluation paradigms:
• Extrinsic
• Intrinsic

• Extrinsic evaluation: Embed the 
language model in an application, 
and compute changes in task 
performance

• Intrinsic evaluation: Measure the 
quality of the model, independent of 
any application

28



Perplexity
• Intrinsic evaluation metric for language models
• Perplexity (PP) of a language model on a test set is the 

inverse probability of the test set, normalized by the 
number of words in the test set

Natalie Parde - UIC CS 421
29



More formally….

• 𝑃𝑃 𝑊 = ! !
"($"$#…$!)

= ! ∏'(!
) !

"($$|$"…$$%")

• Where W is a test set containing words w1, w2, …,  
wn

• History size depends on n-gram size
• 𝑃(𝑤'|𝑤'+!) vs 𝑃(𝑤'|𝑤'+,𝑤'+!), etc.

• Higher conditional probability of a word sequence → 
lower perplexity

• Minimizing perplexity = maximizing test set 
probability according to the language model

Natalie Parde - UIC CS 421
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

Natalie Parde - UIC CS 421 31



Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
P(“421”) = C(“421”) / C(<all unigrams>) = 10/100 = 0.1
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Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)
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Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

PP(“CS 421 Statistical Natural Language Processing 
University of Illinois Chicago”) 

= 
"# !

'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!
= 10
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Example: Perplexity

Word Frequency P(Word)
CS 1
421 1
Statistical 1
Natural 1
Language 1
Processing 1
University 1
of 1
Illinois 1
Chicago 91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)
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Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)
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Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

PP(“Illinois Chicago Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago”) 

= 
"# !

'.'!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!
= 1.73
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Perplexity can be used to 
compare different 
language models.

41



Perplexity can be used to 
compare different 
language models.
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What kind of perplexity 
scores are state-of-the-
art language models 
reaching?

• Depends on the dataset
• Recently, as low as:

• ~10 on WikiText-103: 
https://paperswithcode.com/sota/
language-modelling-on-wikitext-
103

• ~20-30 on Penn Treebank (Word 
Level): 
https://paperswithcode.com/sota/
language-modelling-on-penn-
treebank-word

Natalie Parde - UIC CS 421 43

https://paperswithcode.com/sota/language-modelling-on-wikitext-103
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A cautionary note….

• Improvements in perplexity do not guarantee improvements in task 
performance!

• However, the two are often correlated (and perplexity is quicker and 
easier to check)

• Strong language model evaluations also include an extrinsic 
evaluation component

Natalie Parde - UIC CS 421
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How can we generate text using an n-
gram language model?

Natalie Parde - UIC CS 421 45

1

Select an n-gram randomly from the 
distribution of all n-grams in the 
training corpus

2

Randomly select an n-gram from the 
same distribution, dependent on the 
previous n-gram 
•If we're using a bigram model and the 
previous bigram was "CS 421," our next 
bigram has to start with "421")

3

Repeat until the sentence-final token is 
reached



N-gram size 
affects 
generation 
output!

46
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Why were we 
generating 
verbatim 
Shakespeare 
text with a 4-
gram language 
model?



This 
Week’s 
Topics
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Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward 
Algorithm



“Zero” 
probabilities 
create 
challenges 
for language 
models.

• Zero probabilities occur in two different 
scenarios:

• Unknown words (out-of-vocabulary 
words)

• Known words in unseen contexts 
• Language is varied and often 

unpredictable－few combinations are 
truly impossible

• Zero probabilities also interfere with 
perplexity calculations
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Modeling 
Unknown 
Words

• Add a pseudoword <UNK> to the vocabulary

• Then….
• Option A:

• Choose a fixed words list
• Convert any words not in that list to <UNK>
• Estimate the probabilities for <UNK> like any other word

• Option B:
• Replace all words occurring fewer than n times with 

<UNK>
• Estimate the probabilities for <UNK> like any other word

• Option C:
• Replace the first occurrence of each word with <UNK>
• Estimate the probabilities for <UNK> like any other word

• Beware: If <UNK> ends up with a high probability (e.g., because you 
have a small vocabulary), your language model will have artificially 
lower perplexity!

• Make sure to compare to other language models using the 
same vocabulary to avoid gaming this metric
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We can handle known words in previously unseen 
contexts by applying smoothing techniques.
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Smoothing

• Taking a bit of the probability mass from more frequent events and giving it 
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Natalie Parde - UIC CS 421

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1     🥰

52



Laplace Smoothing

N
atalie P

arde - U
IC
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S

 421

• Add one to all n-gram counts before they are normalized into 
probabilities

• Not the highest-performing technique, but a useful baseline
• Practical method for other text classification tasks

• 𝑃 𝑤/ = 0-
1

 → 𝑃Laplace 𝑤/ = 0-23
124

53



Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

Natalie Parde - UIC CS 421 54



Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ =
𝑐$
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ =
𝑐$
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$3!
,34

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$3!
,34

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$3!
,34

Unigram Probability

Chicago 5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$3!
,34

Unigram Probability

Chicago 5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4

=
1
12

= 0.08

Natalie Parde - UIC CS 421

Bigram Frequency
Chicago Chicago 0+1
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1
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Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12

= 0.08

Probabilities: 
Before and 
After

61



Add-K 
Smoothing

Natalie Parde - UIC CS 421

• Moves a bit less of the probability mass 
from seen to unseen events

• Rather than adding one to each count, 
add a fractional count (e.g., 0.5 or 0.01)

• 𝑃 𝑤/ = 0-
1

 → 𝑃Add−K 𝑤/ = 0-27
1274

• 𝑃 𝑤8|𝑤893 = 0(:;<=:;)
0(:;<=)

 → 

𝑃Add−K 𝑤8|𝑤893 = 0 :;<=:; 27
0 :;<= 274

• This smoothing technique is more 
customizable: the value k can be 
optimized on a portion of the dataset
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Add-K smoothing is useful for some tasks, 
but still tends to be suboptimal for language 
modeling.
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Katz Backoff
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Interpolation
• Linear interpolation

• 𝑃; 𝑤8 𝑤89<𝑤893 =	𝜆3𝑃 𝑤8 𝑤89<𝑤893 + 𝜆<𝑃 𝑤8 𝑤893 + 𝜆=𝑃(𝑤8)
• Where ∑! 𝜆! = 1

• Conditional interpolation
• 𝑃= 𝑤# 𝑤#&"𝑤#&! = 	𝜆!(𝑤#&"#&!)𝑃 𝑤# 𝑤#&"𝑤#&! + 𝜆"(𝑤#&"#&!)𝑃 𝑤# 𝑤#&! + 𝜆>(𝑤#&"#&!)𝑃(𝑤#)

Context-conditioned weights

Natalie Parde - UIC CS 421

N Weight
3 0.5
2 0.4
1 0.1

N-Gram Probability Value
I ❤ 421 P(421 | I ❤) 0.7
❤ 421 P(421 | ❤) 0.5
421 P(421) 0.2

0.5 ∗ 0.7 + 0.4 ∗ 0.5 + 0.1 ∗ 0.2 = 0.57

N-Gram Probability Value Weight
I ❤ 421 P(421 | I ❤) 0.7 0.5
I 🚕 421 P(421 | I 🚕) 0.7 0.1
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Kneser-Ney Smoothing

• Objective: Capture the intuition that although some lower-order n-grams are 
frequent, they are mainly only frequent in specific contexts

• tall nonfat decaf peppermint _______
• “york” is a more frequent unigram than “mocha” in most datasets, but it’s 

mainly frequent when it follows the word “new”
• Creates a unigram model that estimates the probability of seeing the word w as a 

novel continuation, in a new unseen context
• Based on the number of different contexts in which w has already appeared

Natalie Parde - UIC CS 421
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Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93 ) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823
/93 )𝑃KN(𝑤/|𝑤/982<

/93 )
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Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93 ) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823
/93 )𝑃KN(𝑤/|𝑤/982<

/93 )

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤$&! =
𝑑

∑? 𝐶(𝑤$&!𝑣)
𝑤 ∶ 𝑐 𝑤$&!𝑤 > 0

Normalized discount Number of word types that can follow 𝑤$&!

Natalie Parde - UIC CS 421 68



Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93 ) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823
/93 )𝑃KN(𝑤/|𝑤/982<

/93 )

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single 
word contexts for lower-order n-grams
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Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93 ) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823
/93 )𝑃KN(𝑤/|𝑤/982<

/93 )

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single 
word contexts for lower-order n-grams
Discounted n-gram probability …when the recursion terminates, unigrams are interpolated with the 
uniform distribution (𝜀 = empty string)

𝑃@, 𝑤 =
max(𝑐@, 𝑤 − 𝑑, 0)

∑A= 𝑐@,(𝑤 =)
+ 𝜆(𝜀)

1
𝑉

Natalie Parde - UIC CS 421 70



Stupid Backoff
• Doesn’t even try to make the language model a true probability 

distribution 😌 (so doesn’t discount higher-order probabilities)
• If a higher-order n-gram has a zero count, backs off to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤% 𝑤%&'()%&) = $
*(,34567

3 )
*(,34567

347 )
	 if	𝑐 𝑤%&'()% > 0

𝜆𝑆 𝑤% 𝑤%&'(.%&) 	 otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = "($)
&

Generally, 0.4 works well (Brants et al., 2007)

Natalie Parde - UIC CS 421 71



Summary: 
Language 
Modeling 
with N-
Grams

72
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• N-grams: Sequences of n items 
(e.g., characters or words)

• Language models: Statistical 
models of language based on 
observed word or character co-
occurrences

• N-gram probabilities can be 
computed using maximum 
likelihood estimation

• Language models can be 
intrinsically evaluated using 
perplexity

• Unknown words can be handled 
using <UNK> tokens

• Known words in unseen contexts can 
be handled using smoothing



Hidden Markov 
Models

Natalie Parde
UIC CS 421



Sequence 
Labeling

• N-gram language modeling is one way to 
model sequences of language input

• We can also perform sequence labeling 
by assigning labels to individual tokens or 
spans of tokens given a longer input string

2

N
atalie P

arde - U
IC

 C
S

 421

The students were excited about the lecture.

article

articlenoun

nounverb

adjective

preposition



Sequence Labeling
• Objective: Find the label for the next item, based on the labels of other 

items in the sequence. 

Give me a break! Did the window break?

verb

pronoun

determiner

noun

verb

determiner

noun

verb

Natalie Parde - UIC CS 421 3



Why perform 
sequence 
labeling?

• In document-level text classification, 
models assume that the individual 
datapoints being classified are 
disconnected and independent

• Many NLP problems do not satisfy 
this assumption!  Instead, they involve

• Interconnected, mutually 
dependent decisions

• Each of which resolve different 
ambiguities

N
atalie Parde - U

IC
 C

S 421
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Example 
Sequence 

Labeling 
Applications

• Named entity recognition
• Semantic role labeling

Natalie Parde works at the University of Illinois at 
Chicago and lives in Chicago, Illinois.

person organization

location

Natalie drove for 15 hours from Dallas to Chicago in her 
hail-damaged Honda Accord.

agent source destination

instrument

Natalie Parde - UIC CS 421 5



This 
Week’s 
Topics
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Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward 
Algorithm



This 
Week’s 
Topics

Natalie Parde - UIC CS 421 7

Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward 
Algorithm



Probabilistic Sequence Models

• We can perform multiple, interdependent classifications to address a greater problem 
using probabilistic sequence models

• Models that build upon principles used to develop finite state automata are known as 
hidden Markov models

• Hidden Markov models are probabilistic generative models for sequences that make 
predictions based on an underlying set of hidden states

Natalie Parde - UIC CS 421 8



What are 
Markov 
Models?

• Finite state automata with probabilistic 
state transitions

• Markov Property: The future is independent of 
the past, given the present.

• In other words, the next state only depends 
on the current state …it is independent of 
previous history.

• Also referred to as Markov Chains

Natalie Parde - UIC CS 421
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Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4
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Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

P(q3 q2 q1 q4)
= .2 * .1 * .2 * .3
= .0012

Natalie Parde - UIC CS 421 11



Hidden Markov Models

• Markov models that assume an underlying set of 
hidden (unobserved) states in which the model can be

• Assume probabilistic transitions between states over 
time

• Assume probabilistic generation of items (e.g., tokens) 
from states

12



Formal Definition

N
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• A Hidden Markov Model can be specified by enumerating the following properties:
• The set of states, Q
• A sequence of observation likelihoods, B, also called emission probabilities, 

each expressing the probability of an observation being generated from a state i
• A start state, q0, and final state, qF, that are not associated with observations

13



Sample Hidden Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

𝑃(𝑥|𝑞!)
𝑃(𝑦|𝑞!)
𝑃(𝑧|𝑞!)

=
.2
.4
.4

𝑃(𝑥|𝑞")
𝑃(𝑦|𝑞")
𝑃(𝑧|𝑞")

=
.1
.4
.5

𝑃(𝑥|𝑞#)
𝑃(𝑦|𝑞#)
𝑃(𝑧|𝑞#)

=
.7
.1
.2

Natalie Parde - UIC CS 421 14



Formal Definition
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• A Hidden Markov Model can be specified by enumerating the following properties:
• The set of states, Q
• A sequence of observation likelihoods, B, also called emission probabilities, 

each expressing the probability of an observation ot being generated from a 
state i

• A start state, q0, and final state, qF, that are not associated with observations, 
together with transition probabilities out of q0 and into qF

• A transition probability matrix, A, where each aij represents the probability of 
moving from state i to state j, such that ∑!"#$ 𝑎%! = 1	∀𝑖

• A sequence of T observations, O, each drawn from a vocabulary V = v1, v2, …, 
vV

15



Sample Hidden Markov Model

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

𝑃(𝑥|𝑞!)
𝑃(𝑦|𝑞!)
𝑃(𝑧|𝑞!)

=
.2
.4
.4

B2
𝑃(𝑥|𝑞")
𝑃(𝑦|𝑞")
𝑃(𝑧|𝑞")

=
.1
.4
.5

B3
𝑃(𝑥|𝑞#)
𝑃(𝑦|𝑞#)
𝑃(𝑧|𝑞#)

=
.7
.1
.2

O = x, y, z

Natalie Parde - UIC CS 421 16



Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1

q2

q3

q4

17



Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2

q3

q4

18



Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3

q4
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Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3 N/A .2 .1 .3 .4

q4

20



Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3 N/A .2 .1 .3 .4

q4 N/A N/A N/A N/A N/A

21



HMMs can also 
be used for 
probabilistic text 
generation!

22
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• More generally, you can use an HMM to 
generate a sequence of T observations: O 
= o1, o2, …, oT

Begin in the start state
For t in [0, …, T]:

 Randomly select a new state based on the 
transition distribution for the current state

 Randomly select an observation from the new state 
based on the observation distribution for that state



Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

the = .3, her = .1, 
my = .3, Devika’s = .3

laughed = .5, ate = .2, 
slept = .3

Natalie Parde - UIC CS 421 23



Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

my unicorn laughed

Natalie Parde - UIC CS 421

the = .3, her = .1, 
my = .3, Devika’s = .3
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Three Fundamental HMM Problems

• Observation Likelihood: How likely is a particular observation 
sequence to occur?

• Decoding: What is the best sequence of hidden states for an 
observed sequence?

• What is the best sequence of labels for our test data?
• Learning: What are the transition probabilities and observation 

likelihoods that best fit the observation sequence and HMM states?
• How do we empirically fit our training data?

Natalie Parde - UIC CS 421
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This 
Week’s 
Topics

Natalie Parde - UIC CS 421 32

Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward 
Algorithm



Observation 
Likelihood

• Given a sequence of 
observations and an 
HMM, what is the 
probability that this 
sequence was generated 
by the model?

• Useful for two tasks:
• Sequence 

classification
• Selecting the most 

likely sequence

Natalie Parde - UIC CS 421
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Sequence Classification

• Assuming an HMM is available for every possible class, 
what is the most likely class for a given observation 
sequence?

• Which HMM is most likely to have generated the 
sequence?

Natalie Parde - UIC CS 421
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Most Likely Sequence
• Of two or more possible sequences, which one was most likely generated 

by a given HMM?

Sarcasm
I love long and 
confusing homework 
assignments.

Oh, yay, I just looooove 
long and confusing 
homework assignments.

35



How can we compute the observation 
likelihood?
• Naïve Solution:

• Consider all possible state sequences, Q, of length T that the model, 𝜆, could 
have traversed in generating the given observation sequence, O

• Compute the probability of a given state sequence from A, and multiply it by 
the probability of generating the given observation sequence for that state 
sequence

• P(O,Q | 𝜆) = P(O | Q, 𝜆) * P(Q | 𝜆)
• Repeat for all possible state sequences, and sum over all to get P(O | 𝜆)

• But, this is computationally complex!
• O(TNT)
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How can we compute the 
observation likelihood?

• Efficient Solution:
• Forward Algorithm: Dynamic programming 

algorithm that computes the observation 
likelihood by summing over the probabilities of 
all possible hidden state paths that could 
generate the observation sequence.

• Implicitly folds each of these paths into a 
single forward trellis

• Why does this work?
• Markov assumption (the probability of being in 

any state at a given time t only relies on the 
probability of being in each possible state at 
time t-1)

• Works in O(TN2) time!
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How does the forward algorithm work?

• Let 𝛼!(𝑗) be the probability of being in state j after seeing the first t observations, 
given your HMM 𝜆

• 𝛼!(𝑗) is computed by summing over the probabilities of every path that could lead 
you to this cell

• 𝛼! 𝑗 = 𝑃 𝑜", 𝑜#…𝑜$, 𝑞$ = 𝑗 𝜆 =	∑!%"& 𝛼$'"(𝑖)𝑎!(𝑏((𝑜$)
• 𝛼$'"(𝑖): The previous forward path probability from the previous time step
• 𝑎!(: The transition probability from previous state qi to current state qj
• 𝑏((𝑜$): The state observation likelihood of the observed item ot given the 

current state j
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Formal Algorithm
create a probability matrix forward[N+2,T]

for each state q in [1, …, N] do:

 forward[q,1] ← a0,q * bq(o1)

for each time step t from 2 to T do:

 for each state q in [1, …, N] do:

  forward[q,t] ←∑2!34
5 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞6, 𝑡 − 1 ∗ 𝑎2!,2 ∗ 𝑏2(𝑜8)

forwardprob ←∑2345 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞, 𝑇
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Sample Problem
• You’re trying to solve a problem that relies on you knowing which 

days it was hot and cold in Chicago during the summer of 1924
• Unfortunately, you have no official records of the weather in Chicago 

for that summer, although you’re trying to model some key weather 
patterns from that year using an HMM

• You do have one promising lead: You find a detailed diary tracking 
how many ice cream cones the author of that diary ate on each day

• You decide to focus on a three-day sequence:
• Day 1: 3 ice cream cones
• Day 2: 1 ice cream cone
• Day 3: 3 ice cream cones

• Your first task is to determine whether your current HMM does a 
good job at modeling this sequence
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Your HMM

q0
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cold2
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.3
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=
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.4
.1
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Forward Trellis

• Incorporates all the information you’ll need 
to implement the forward algorithm

• Observations
• Transition probabilities
• State observation likelihoods
• Forward probabilities from earlier 

observations

Natalie Parde - UIC CS 421 42



Forward Step

Ot-2 Ot-1 Ot Ot+1
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Forward Trellis
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Forward Trellis
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Forward Trellis
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Forward Trellis
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Forward Trellis
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Forward Trellis
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Forward Trellis
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Forward Trellis
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Forward Trellis
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We’ve so far 
tackled one 
of the 
fundamental 
HMM tasks.

• What is the probability that a sequence 
of observations fits a given HMM?

• Calculate using forward probabilities!
• However, there are still two remaining 

tasks to explore….
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This 
Week’s 
Topics
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Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward 
Algorithm



Decoding
• Given an observation sequence 

and an HMM, what is the best 
hidden state sequence?

• How do we choose a state 
sequence that is optimal in some 
sense (e.g., best explains the 
observations)?

• Very useful for sequence 
labeling!
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Decoding

• Naïve Approach:
• For each hidden state sequence Q, compute P(O|Q)
• Pick the sequence with the highest probability

• However, this is computationally inefficient!
• O(NT)
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How can 
we decode 
sequences 
more 
efficiently?

• Viterbi Algorithm
• Another dynamic programming algorithm
• Uses a similar trellis to the Forward algorithm

• Viterbi time complexity: O(N2T)
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Viterbi Intuition

• Goal: Compute the joint probability of the observation sequence together with the 
best state sequence

• So, recursively compute the probability of the most likely subsequence of 
states that accounts for the first t observations and ends in state qj.

• 𝑣$ 𝑗 =	 max
)",)#,…,)$%#

𝑃 𝑞,, 𝑞", … , 𝑞$'", 𝑜", … , 𝑜$, 𝑞$ = 𝑞(|𝜆

• Also record backpointers that subsequently allow you to backtrace the most 
probable state sequence

• 𝑏𝑡$(𝑗) stores the state at time t-1 that maximizes the probability that the 
system was in state qj at time t, given the observed sequence
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Formal Algorithm
create a path probability matrix Viterbi[N+2,T]

for each state q in [1,…,N] do:
 Viterbi[q,1] ← a0,q * bq(o1)
 backpointer[q,1] ← 0
for each time step t in [2,…,T] do:
 for each state q in [1,…,N] do:
  𝑣𝑖𝑡𝑒𝑟𝑏𝑖[𝑞, 𝑡] ← max

&/∈[#,…,+]
𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞-, 𝑡 − 1 ∗ 𝑎&/,& ∗ 𝑏&(𝑜.)

  𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟[𝑞, 𝑡] ← argmax
&/∈[#,…,+]

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞-, 𝑡 − 1 ∗	𝑎&/,& ∗ 𝑏&(𝑜.)

bestpathprob ← max
&/∈ #,…,+

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞′, 𝑇
bestpathpointer ← argmax

&/∈ #,…,+
𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞′, 𝑇
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Seem 
familiar?

• Viterbi is basically the forward 
algorithm + backpointers!

• Instead of summing across prior 
forward probabilities, we use a max 
function
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Viterbi Trellis
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Viterbi Trellis
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Viterbi Trellis
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Viterbi Trellis
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Viterbi Trellis
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Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 * 

P(3|
h)

.8 
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

𝑣2(c) = max(.32 * .15, .02 * .30) = .048

𝑣2(h) = max(.32 * .14, .02 * .08) = .0448

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

66



Viterbi Trellis
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Viterbi Trellis
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Viterbi Trellis
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Viterbi Backtrace
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Viterbi Backtrace
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Viterbi Backtrace
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Viterbi Backtrace
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The Viterbi algorithm is used in many 
domains, even beyond text processing!
• Speech recognition

• Given an input acoustic signal, find the most likely sequence of words or 
phonemes

• Digital error correction
• Given a received, potentially noisy signal, determine the most likely 

transmitted message
• Computer vision

• Given noisy measurements in video sequences, estimate the most likely 
trajectory of an object over time

• Economics
• Given historical data, predict financial market states at certain timepoints
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This 
Week’s 
Topics
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Tuesday

N-gram language 
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward 
Algorithm



Finally …how do we train HMMs?

• If we have a set of observations, can we learn the parameters 
(transition probabilities and observation likelihoods) directly?
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Forward-Backward Algorithm

• Special case of expectation-maximization (EM) algorithm
• Input:

• Unlabeled sequence of observations, O
• Vocabulary of hidden states, Q

• Output: Transition probabilities and observation likelihoods
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How does 
the algorithm 
compute 
these 
outputs?
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• Iteratively estimate the counts for 
transitions from one state to 
another

• Start with base estimates for aij 
and bj, and iteratively improve 
those estimates

• Get estimated probabilities by:
• Computing the forward probability 

for an observation
• Dividing that probability mass 

among all the different paths that 
contributed to this forward 
probability (backward 
probability)



Backward Algorithm
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• We define the backward probability as follows:
• 𝛽8 𝑖 = 𝑃(𝑜8A4, 𝑜8AB, … , 𝑜C|𝑞8 = 𝑖, 𝜆)
• Probability of generating partial observations from time t+1 until 

the end of the sequence, given that the HMM 𝜆	is in state i at time t
• Also computed using a trellis, but moves backwards instead



Backward Step
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For the expectation step of the forward-backward 
algorithm, we re-estimate transition probabilities and 
observation likelihoods.

• We re-estimate transition probabilities, aij, as follows:
• Let 𝜁! 𝑖, 𝑗 = "!($)&"#'#((!$%))!$%(*)

∑#&%
' "!($))!(*)

• Then, B𝑎%! =
expected	#	transitions	from	state	𝑖	to	state	𝑗

expected	#	transitions	from	state	𝑖 = ∑>?@AB@ 3>(%,!)
∑>?@AB@∑C?@

D 3>(%,6)

• Check out the course textbook (Appendix A) for an in-depth discussion of how the 
numerator and denominator above are derived!
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Re-Estimating Observation Likelihood
• We re-estimate bj as follows:

• Let 𝛾. 𝑗 = 7>(!)8>(!)
7A(&E)

• Then, P𝑏! 𝑣6 = expected	#	of	times	in	state	𝑗	and	observing	symbol	9C
expected	#	of	times	in	state	𝑗 =

∑>?@	s.t.	F>?GC
A :>(!)

∑>?@A :>(!)
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Putting it all together, we have the 
forward-backward algorithm!
initialize A and B
iterate until convergence:

   # Expectation Step
   compute 𝛾8(𝑗) for all t and j
   compute 𝜁8(𝑖, 𝑗) for all t, i, and j

   # Maximization Step
      =𝑎HI =

∑$&#'%# J$(H,I)
∑$&#
'%# ∑(&#

) J$(H,K)

      >𝑏I 𝑣K =
∑
$&#	s.t.	+$&,(
' L$(I)

∑$&#
' L$(I)

  for the symbol 𝑣K in the vocabulary
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Summary: 
Hidden 
Markov 
Models

• HMMs are probabilistic generative models for 
sequences

• They make predictions based on underlying hidden 
states

• Three fundamental HMM problems include:
• Computing the likelihood of a sequence of 

observations
• Determining the best sequence of hidden states 

for an observed sequence
• Learning HMM parameters given an observation 

sequence and a set of hidden states
• Observation likelihood can be computed using the 

forward algorithm
• Sequences of hidden states can be decoded using 

the Viterbi algorithm
• HMM parameters can be learned using the forward-

backward algorithm
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