
N-Gram
Language

Models
Natalie Parde

UIC CS 421

Language is inherently contextual.

• Words or characters in
language are dependent upon
one another!

• Sequence modeling allows
us to make use of sequential
information in language

• What are some ways we can
model sequences?
• Language models
• Hidden Markov models

Natalie Parde - UIC CS 421
2

This
Week’s
Topics

Natalie Parde - UIC CS 421 3

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

This
Week’s
Topics

Natalie Parde - UIC CS 421 4

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

Language
Modeling
• Learning how to effectively

predict the likelihood of
word or character
sequences in a language

Natalie Parde - UIC CS 421 5

Why is language
modeling useful?

• Helps identify words in noisy, ambiguous
input

• Speech recognition or autocorrect
• Helps generate natural-sounding language

• Machine translation or image
captioning

• In contemporary NLP, language modeling
forms the basis of most approaches

• Language representation

Natalie Parde - UIC CS 421 6

Language
models
come in

many
forms!

N-Grams

• Sequences of a predefined item type
within a language

• N → Size of the sequence
• -gram → Greek-derived suffix meaning

“what is written”
• First use of the term appears to be in the

late 1940s
• A Mathematical Theory of Communication,

by Claude Shannon:
https://people.math.harvard.edu/~ctm/home/
text/others/shannon/entropy/entropy.pdf

Natalie Parde - UIC CS 421 8

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

N-grams can be words,
characters, or any other
type of item in your
language.

Natalie Parde - UIC CS 421 9

N-grams are interesting! N-grams are interesting!

Special
N-Grams

• Most higher-order (n>3) n-
grams are simply referred
to using the value of n

• 4-gram
• 5-gram

• However, lower-order n-
grams are often referred to
using special terms:

• Unigram (1-gram)
• Bigram (2-gram)
• Trigram (3-gram)

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

5-gram

4-gram

trigram

bigram

P(“spring”)

unigram

Natalie Parde - UIC CS 421 10

N-Gram Language Models
• Goal: Predict P(word|history)

• P(“spring” | “I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421

P(“fall” | “I’m
 so

excited to be taking

CS 421 this”) P(“refrigerator” | “I’m
 so

excited to be taking CS

421 this”)

P(“and” | “I’m so excited to be taking CS 421 this”)

11

Probabilities for n-gram
language models come from
corpus frequencies.
• Intuition:

1. Take a large corpus
2. Count the number of times you see the history
3. Count the number of times the specified word

follows the history

P(“spring” | “I’m so excited to be taking CS 421 this”)
= C(“I’m so excited to be taking CS 421 this spring”) /
C(“I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421
12

However, we don’t necessarily want to
consider our entire history.
• What if our history contains uncommon words?
• What if we have limited computing resources?

P(“spring” | “I’m so excited to be taking Natalie Parde’s CS 421 this”)

Out of all possible 11-word sequences on the web, how
many are “I’m so excited to be taking Natalie Parde’s
CS 421 this”?

Natalie Parde - UIC CS 421 13

Better way of estimating P(word|history)

• Instead of computing the probability of a
word given its entire history,
approximate the history using the
most recent few words.

• We do this using fixed-length n-grams.

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

14

N-gram
models follow
the Markov
assumption.

• We can predict the probability of some future
unit without looking too far into the past

• Bigram language model: Probability of a
word depends only on the previous word

• Trigram language model: Probability of a
word depends only on the two previous
words

• N-gram language model: Probability of a
word depends only on the n-1 previous
words

Natalie Parde - UIC CS 421
15

More formally….
• 𝑃 𝑤! 𝑤"!#" ≈ 𝑃(𝑤!|𝑤!#$%"!#")
• We can then multiply these individual word probabilities together to get the

probability of a word sequence
• 𝑃 𝑤"& ≈ ∏!'"

& 𝑃(𝑤!|𝑤!#$%"!#")

Natalie Parde - UIC CS 421

P(“Summer break is already over?”)

P(“over?” | “already”) * P(“already” | “is”) *
P(“is” | “break”) * P(“break” | “Summer”)

16

To compute n-
gram
probabilities,
we can use
maximum
likelihood
estimation.

17

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

Natalie Parde - UIC CS 421 18

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Natalie Parde - UIC CS 421 19

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Frequency
<s> I 1
I am 1
am cold. 1
cold. </s> 3
… …
is Chicago. 1
Chicago. </s> 1

Natalie Parde - UIC CS 421 20

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

Natalie Parde - UIC CS 421 21

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

Natalie Parde - UIC CS 421 22

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

Natalie Parde - UIC CS 421 23

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

Natalie Parde - UIC CS 421

🤷
24

We can
learn a lot
of useful
things from
n-gram
statistics!

Which type of n-
gram is best?
• In general, the highest-order value of n that your data can

support

• Sparsity increases with order, and sparse feature vectors are
not very useful when training statistical models

• Make sure that your dataset is large enough to handle your
selected n-gram size

• We can usually determine this by running experiments on the
same data with different n-gram sizes and figuring out which
size leads to the best results

• For a deep dive into statistical power in NLP experiments,
check out the following paper:

• With Little Power Comes Great Responsibility, by Dallas
Card et al.: https://aclanthology.org/2020.emnlp-
main.745/

Natalie Parde - UIC CS 421 26

https://aclanthology.org/2020.emnlp-main.745/
https://aclanthology.org/2020.emnlp-main.745/

This
Week’s
Topics

Natalie Parde - UIC CS 421 27

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

We’ve learned
how to build n-
gram language
models, but
how do we
evaluate them?

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Two types of evaluation paradigms:
• Extrinsic
• Intrinsic

• Extrinsic evaluation: Embed the
language model in an application,
and compute changes in task
performance

• Intrinsic evaluation: Measure the
quality of the model, independent of
any application

28

Perplexity
• Intrinsic evaluation metric for language models
• Perplexity (PP) of a language model on a test set is the

inverse probability of the test set, normalized by the
number of words in the test set

Natalie Parde - UIC CS 421
29

More formally….

• 𝑃𝑃 𝑊 = ! !
"($"$#…$!)

= ! ∏'(!
) !

"($$|$"…$$%")

• Where W is a test set containing words w1, w2, …,
wn

• History size depends on n-gram size
• 𝑃(𝑤'|𝑤'+!) vs 𝑃(𝑤'|𝑤'+,𝑤'+!), etc.

• Higher conditional probability of a word sequence →
lower perplexity

• Minimizing perplexity = maximizing test set
probability according to the language model

Natalie Parde - UIC CS 421

30

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

Natalie Parde - UIC CS 421 31

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

Natalie Parde - UIC CS 421 32

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

Natalie Parde - UIC CS 421 33

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1

Natalie Parde - UIC CS 421 34

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
P(“421”) = C(“421”) / C(<all unigrams>) = 10/100 = 0.1

Natalie Parde - UIC CS 421 35

Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

Natalie Parde - UIC CS 421 36

Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

PP(“CS 421 Statistical Natural Language Processing
University of Illinois Chicago”)

=
"# !

'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!∗'.!
= 10

Natalie Parde - UIC CS 421 37

Example: Perplexity

Word Frequency P(Word)
CS 1
421 1
Statistical 1
Natural 1
Language 1
Processing 1
University 1
of 1
Illinois 1
Chicago 91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

Natalie Parde - UIC CS 421 38

Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

Natalie Parde - UIC CS 421 39

Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
! 1
𝑃(𝑤!𝑤" …𝑤#)

=
!

)
$%!

#
1

𝑃(𝑤$|𝑤! …𝑤$&!)

PP(“Illinois Chicago Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago”)

=
"# !

'.'!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!∗'.*!
= 1.73

Natalie Parde - UIC CS 421 40

Perplexity can be used to
compare different
language models.

41

Perplexity can be used to
compare different
language models.

42

What kind of perplexity
scores are state-of-the-
art language models
reaching?

• Depends on the dataset
• Recently, as low as:

• ~10 on WikiText-103:
https://paperswithcode.com/sota/
language-modelling-on-wikitext-
103

• ~20-30 on Penn Treebank (Word
Level):
https://paperswithcode.com/sota/
language-modelling-on-penn-
treebank-word

Natalie Parde - UIC CS 421 43

https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-wikitext-103
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word
https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

A cautionary note….

• Improvements in perplexity do not guarantee improvements in task
performance!

• However, the two are often correlated (and perplexity is quicker and
easier to check)

• Strong language model evaluations also include an extrinsic
evaluation component

Natalie Parde - UIC CS 421
44

How can we generate text using an n-
gram language model?

Natalie Parde - UIC CS 421 45

1

Select an n-gram randomly from the
distribution of all n-grams in the
training corpus

2

Randomly select an n-gram from the
same distribution, dependent on the
previous n-gram
•If we're using a bigram model and the
previous bigram was "CS 421," our next
bigram has to start with "421")

3

Repeat until the sentence-final token is
reached

N-gram size
affects
generation
output!

46

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

Why were we
generating
verbatim
Shakespeare
text with a 4-
gram language
model?

This
Week’s
Topics

Natalie Parde - UIC CS 421 48

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

“Zero”
probabilities
create
challenges
for language
models.

• Zero probabilities occur in two different
scenarios:

• Unknown words (out-of-vocabulary
words)

• Known words in unseen contexts
• Language is varied and often

unpredictable－few combinations are
truly impossible

• Zero probabilities also interfere with
perplexity calculations

Natalie Parde - UIC CS 421 49

Modeling
Unknown
Words

• Add a pseudoword <UNK> to the vocabulary

• Then….
• Option A:

• Choose a fixed words list
• Convert any words not in that list to <UNK>
• Estimate the probabilities for <UNK> like any other word

• Option B:
• Replace all words occurring fewer than n times with

<UNK>
• Estimate the probabilities for <UNK> like any other word

• Option C:
• Replace the first occurrence of each word with <UNK>
• Estimate the probabilities for <UNK> like any other word

• Beware: If <UNK> ends up with a high probability (e.g., because you
have a small vocabulary), your language model will have artificially
lower perplexity!

• Make sure to compare to other language models using the
same vocabulary to avoid gaming this metric

Natalie Parde - UIC CS 421 50

We can handle known words in previously unseen
contexts by applying smoothing techniques.

Natalie Parde - UIC CS 421 51

Smoothing

• Taking a bit of the probability mass from more frequent events and giving it
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Natalie Parde - UIC CS 421

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1 🥰

52

Laplace Smoothing

N
atalie P

arde - U
IC

 C
S

 421

• Add one to all n-gram counts before they are normalized into
probabilities

• Not the highest-performing technique, but a useful baseline
• Practical method for other text classification tasks

• 𝑃 𝑤/ = 0-
1

 → 𝑃Laplace 𝑤/ = 0-23
124

53

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

Natalie Parde - UIC CS 421 54

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ =
𝑐$
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 55

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ =
𝑐$
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Natalie Parde - UIC CS 421 56

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$3!
,34

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 57

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$3!
,34

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 58

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$3!
,34

Unigram Probability

Chicago 5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421 59

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤$ = +$
,

 → 𝑃Laplace 𝑤$ = +$3!
,34

Unigram Probability

Chicago 5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4

=
1
12

= 0.08

Natalie Parde - UIC CS 421

Bigram Frequency
Chicago Chicago 0+1
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1

60

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12

= 0.08

Probabilities:
Before and
After

61

Add-K
Smoothing

Natalie Parde - UIC CS 421

• Moves a bit less of the probability mass
from seen to unseen events

• Rather than adding one to each count,
add a fractional count (e.g., 0.5 or 0.01)

• 𝑃 𝑤/ = 0-
1

 → 𝑃Add−K 𝑤/ = 0-27
1274

• 𝑃 𝑤8|𝑤893 = 0(:;<=:;)
0(:;<=)

 →

𝑃Add−K 𝑤8|𝑤893 = 0 :;<=:; 27
0 :;<= 274

• This smoothing technique is more
customizable: the value k can be
optimized on a portion of the dataset

62

Add-K smoothing is useful for some tasks,
but still tends to be suboptimal for language
modeling.

63

Katz Backoff

64

Interpolation
• Linear interpolation

• 𝑃; 𝑤8 𝑤89<𝑤893 =	𝜆3𝑃 𝑤8 𝑤89<𝑤893 + 𝜆<𝑃 𝑤8 𝑤893 + 𝜆=𝑃(𝑤8)
• Where ∑! 𝜆! = 1

• Conditional interpolation
• 𝑃= 𝑤# 𝑤#&"𝑤#&! = 	𝜆!(𝑤#&"#&!)𝑃 𝑤# 𝑤#&"𝑤#&! + 𝜆"(𝑤#&"#&!)𝑃 𝑤# 𝑤#&! + 𝜆>(𝑤#&"#&!)𝑃(𝑤#)

Context-conditioned weights

Natalie Parde - UIC CS 421

N Weight
3 0.5
2 0.4
1 0.1

N-Gram Probability Value
I ❤ 421 P(421 | I ❤) 0.7
❤ 421 P(421 | ❤) 0.5
421 P(421) 0.2

0.5 ∗ 0.7 + 0.4 ∗ 0.5 + 0.1 ∗ 0.2 = 0.57

N-Gram Probability Value Weight
I ❤ 421 P(421 | I ❤) 0.7 0.5
I 🚕 421 P(421 | I 🚕) 0.7 0.1

65

Kneser-Ney Smoothing

• Objective: Capture the intuition that although some lower-order n-grams are
frequent, they are mainly only frequent in specific contexts

• tall nonfat decaf peppermint _______
• “york” is a more frequent unigram than “mocha” in most datasets, but it’s

mainly frequent when it follows the word “new”
• Creates a unigram model that estimates the probability of seeing the word w as a

novel continuation, in a new unseen context
• Based on the number of different contexts in which w has already appeared

Natalie Parde - UIC CS 421
66

Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823
/93)𝑃KN(𝑤/|𝑤/982<

/93)

Natalie Parde - UIC CS 421 67

Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823
/93)𝑃KN(𝑤/|𝑤/982<

/93)

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤$&! =
𝑑

∑? 𝐶(𝑤$&!𝑣)
𝑤 ∶ 𝑐 𝑤$&!𝑤 > 0

Normalized discount Number of word types that can follow 𝑤$&!

Natalie Parde - UIC CS 421 68

Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823
/93)𝑃KN(𝑤/|𝑤/982<

/93)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

Natalie Parde - UIC CS 421 69

Kneser-Ney Smoothing

𝑃KN(𝑤/|𝑤/9823
/93) =

max 𝑐E1 𝑤/9823/ − 𝑑, 	0
∑F 𝑐E1 𝑤/9823/93 𝑣

+ 𝜆(𝑤/9823
/93)𝑃KN(𝑤/|𝑤/982<

/93)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams
Discounted n-gram probability …when the recursion terminates, unigrams are interpolated with the
uniform distribution (𝜀 = empty string)

𝑃@, 𝑤 =
max(𝑐@, 𝑤 − 𝑑, 0)

∑A= 𝑐@,(𝑤 =)
+ 𝜆(𝜀)

1
𝑉

Natalie Parde - UIC CS 421 70

Stupid Backoff
• Doesn’t even try to make the language model a true probability

distribution 😌 (so doesn’t discount higher-order probabilities)
• If a higher-order n-gram has a zero count, backs off to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤% 𝑤%&'()%&) = $
*(,34567

3)
*(,34567

347)
	 if	𝑐 𝑤%&'()% > 0

𝜆𝑆 𝑤% 𝑤%&'(.%&) 	 otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = "($)
&

Generally, 0.4 works well (Brants et al., 2007)

Natalie Parde - UIC CS 421 71

Summary:
Language
Modeling
with N-
Grams

72

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• N-grams: Sequences of n items
(e.g., characters or words)

• Language models: Statistical
models of language based on
observed word or character co-
occurrences

• N-gram probabilities can be
computed using maximum
likelihood estimation

• Language models can be
intrinsically evaluated using
perplexity

• Unknown words can be handled
using <UNK> tokens

• Known words in unseen contexts can
be handled using smoothing

Hidden Markov
Models

Natalie Parde
UIC CS 421

Sequence
Labeling

• N-gram language modeling is one way to
model sequences of language input

• We can also perform sequence labeling
by assigning labels to individual tokens or
spans of tokens given a longer input string

2

N
atalie P

arde - U
IC

 C
S

 421

The students were excited about the lecture.

article

articlenoun

nounverb

adjective

preposition

Sequence Labeling
• Objective: Find the label for the next item, based on the labels of other

items in the sequence.

Give me a break! Did the window break?

verb

pronoun

determiner

noun

verb

determiner

noun

verb

Natalie Parde - UIC CS 421 3

Why perform
sequence
labeling?

• In document-level text classification,
models assume that the individual
datapoints being classified are
disconnected and independent

• Many NLP problems do not satisfy
this assumption! Instead, they involve

• Interconnected, mutually
dependent decisions

• Each of which resolve different
ambiguities

N
atalie Parde - U

IC
 C

S 421

4

Example
Sequence

Labeling
Applications

• Named entity recognition
• Semantic role labeling

Natalie Parde works at the University of Illinois at
Chicago and lives in Chicago, Illinois.

person organization

location

Natalie drove for 15 hours from Dallas to Chicago in her
hail-damaged Honda Accord.

agent source destination

instrument

Natalie Parde - UIC CS 421 5

This
Week’s
Topics

Natalie Parde - UIC CS 421 6

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

This
Week’s
Topics

Natalie Parde - UIC CS 421 7

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

Probabilistic Sequence Models

• We can perform multiple, interdependent classifications to address a greater problem
using probabilistic sequence models

• Models that build upon principles used to develop finite state automata are known as
hidden Markov models

• Hidden Markov models are probabilistic generative models for sequences that make
predictions based on an underlying set of hidden states

Natalie Parde - UIC CS 421 8

What are
Markov
Models?

• Finite state automata with probabilistic
state transitions

• Markov Property: The future is independent of
the past, given the present.

• In other words, the next state only depends
on the current state …it is independent of
previous history.

• Also referred to as Markov Chains

Natalie Parde - UIC CS 421
9

Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

Natalie Parde - UIC CS 421 10

Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

P(q3 q2 q1 q4)
= .2 * .1 * .2 * .3
= .0012

Natalie Parde - UIC CS 421 11

Hidden Markov Models

• Markov models that assume an underlying set of
hidden (unobserved) states in which the model can be

• Assume probabilistic transitions between states over
time

• Assume probabilistic generation of items (e.g., tokens)
from states

12

Formal Definition

N
atalie P

arde - U
IC

 C
S

 421

• A Hidden Markov Model can be specified by enumerating the following properties:
• The set of states, Q
• A sequence of observation likelihoods, B, also called emission probabilities,

each expressing the probability of an observation being generated from a state i
• A start state, q0, and final state, qF, that are not associated with observations

13

Sample Hidden Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

𝑃(𝑥|𝑞!)
𝑃(𝑦|𝑞!)
𝑃(𝑧|𝑞!)

=
.2
.4
.4

𝑃(𝑥|𝑞")
𝑃(𝑦|𝑞")
𝑃(𝑧|𝑞")

=
.1
.4
.5

𝑃(𝑥|𝑞#)
𝑃(𝑦|𝑞#)
𝑃(𝑧|𝑞#)

=
.7
.1
.2

Natalie Parde - UIC CS 421 14

Formal Definition

N
atalie P

arde - U
IC

 C
S

 421

• A Hidden Markov Model can be specified by enumerating the following properties:
• The set of states, Q
• A sequence of observation likelihoods, B, also called emission probabilities,

each expressing the probability of an observation ot being generated from a
state i

• A start state, q0, and final state, qF, that are not associated with observations,
together with transition probabilities out of q0 and into qF

• A transition probability matrix, A, where each aij represents the probability of
moving from state i to state j, such that ∑!"#$ 𝑎%! = 1	∀𝑖

• A sequence of T observations, O, each drawn from a vocabulary V = v1, v2, …,
vV

15

Sample Hidden Markov Model

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

𝑃(𝑥|𝑞!)
𝑃(𝑦|𝑞!)
𝑃(𝑧|𝑞!)

=
.2
.4
.4

B2
𝑃(𝑥|𝑞")
𝑃(𝑦|𝑞")
𝑃(𝑧|𝑞")

=
.1
.4
.5

B3
𝑃(𝑥|𝑞#)
𝑃(𝑦|𝑞#)
𝑃(𝑧|𝑞#)

=
.7
.1
.2

O = x, y, z

Natalie Parde - UIC CS 421 16

Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1

q2

q3

q4

17

Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2

q3

q4

18

Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3

q4

19

Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3 N/A .2 .1 .3 .4

q4

20

Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4

q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3 N/A .2 .1 .3 .4

q4 N/A N/A N/A N/A N/A

21

HMMs can also
be used for
probabilistic text
generation!

22

N
atalie P

arde - U
IC

 C
S

 421

• More generally, you can use an HMM to
generate a sequence of T observations: O
= o1, o2, …, oT

Begin in the start state
For t in [0, …, T]:

 Randomly select a new state based on the
transition distribution for the current state

 Randomly select an observation from the new state
based on the observation distribution for that state

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

the = .3, her = .1,
my = .3, Devika’s = .3

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421 23

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

24

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

25

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

26

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

27

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

28

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

29

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

my unicorn laughed

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

30

Three Fundamental HMM Problems

• Observation Likelihood: How likely is a particular observation
sequence to occur?

• Decoding: What is the best sequence of hidden states for an
observed sequence?

• What is the best sequence of labels for our test data?
• Learning: What are the transition probabilities and observation

likelihoods that best fit the observation sequence and HMM states?
• How do we empirically fit our training data?

Natalie Parde - UIC CS 421
31

This
Week’s
Topics

Natalie Parde - UIC CS 421 32

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

Observation
Likelihood

• Given a sequence of
observations and an
HMM, what is the
probability that this
sequence was generated
by the model?

• Useful for two tasks:
• Sequence

classification
• Selecting the most

likely sequence

Natalie Parde - UIC CS 421
33

Sequence Classification

• Assuming an HMM is available for every possible class,
what is the most likely class for a given observation
sequence?

• Which HMM is most likely to have generated the
sequence?

Natalie Parde - UIC CS 421
34

Most Likely Sequence
• Of two or more possible sequences, which one was most likely generated

by a given HMM?

Sarcasm
I love long and
confusing homework
assignments.

Oh, yay, I just looooove
long and confusing
homework assignments.

35

How can we compute the observation
likelihood?
• Naïve Solution:

• Consider all possible state sequences, Q, of length T that the model, 𝜆, could
have traversed in generating the given observation sequence, O

• Compute the probability of a given state sequence from A, and multiply it by
the probability of generating the given observation sequence for that state
sequence

• P(O,Q | 𝜆) = P(O | Q, 𝜆) * P(Q | 𝜆)
• Repeat for all possible state sequences, and sum over all to get P(O | 𝜆)

• But, this is computationally complex!
• O(TNT)

Natalie Parde - UIC CS 421
36

How can we compute the
observation likelihood?

• Efficient Solution:
• Forward Algorithm: Dynamic programming

algorithm that computes the observation
likelihood by summing over the probabilities of
all possible hidden state paths that could
generate the observation sequence.

• Implicitly folds each of these paths into a
single forward trellis

• Why does this work?
• Markov assumption (the probability of being in

any state at a given time t only relies on the
probability of being in each possible state at
time t-1)

• Works in O(TN2) time!

Natalie Parde - UIC CS 421 37

How does the forward algorithm work?

• Let 𝛼!(𝑗) be the probability of being in state j after seeing the first t observations,
given your HMM 𝜆

• 𝛼!(𝑗) is computed by summing over the probabilities of every path that could lead
you to this cell

• 𝛼! 𝑗 = 𝑃 𝑜", 𝑜#…𝑜$, 𝑞$ = 𝑗 𝜆 =	∑!%"& 𝛼$'"(𝑖)𝑎!(𝑏((𝑜$)
• 𝛼$'"(𝑖): The previous forward path probability from the previous time step
• 𝑎!(: The transition probability from previous state qi to current state qj
• 𝑏((𝑜$): The state observation likelihood of the observed item ot given the

current state j

Natalie Parde - UIC CS 421
38

Note the distinction between alpha (𝛼) and a (𝑎)!

Formal Algorithm
create a probability matrix forward[N+2,T]

for each state q in [1, …, N] do:

 forward[q,1] ← a0,q * bq(o1)

for each time step t from 2 to T do:

 for each state q in [1, …, N] do:

 forward[q,t] ←∑2!34
5 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞6, 𝑡 − 1 ∗ 𝑎2!,2 ∗ 𝑏2(𝑜8)

forwardprob ←∑2345 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞, 𝑇

Natalie Parde - UIC CS 421 39

Sample Problem
• You’re trying to solve a problem that relies on you knowing which

days it was hot and cold in Chicago during the summer of 1924
• Unfortunately, you have no official records of the weather in Chicago

for that summer, although you’re trying to model some key weather
patterns from that year using an HMM

• You do have one promising lead: You find a detailed diary tracking
how many ice cream cones the author of that diary ate on each day

• You decide to focus on a three-day sequence:
• Day 1: 3 ice cream cones
• Day 2: 1 ice cream cone
• Day 3: 3 ice cream cones

• Your first task is to determine whether your current HMM does a
good job at modeling this sequence

Natalie Parde - UIC CS 421 40

Your HMM

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
𝑃(1|ℎ𝑜𝑡!)
𝑃(2|ℎ𝑜𝑡!)
𝑃(3|ℎ𝑜𝑡!)

=
.2
.4
.4

B2
𝑃(1|𝑐𝑜𝑙𝑑!)
𝑃(2|𝑐𝑜𝑙𝑑!)
𝑃(3|𝑐𝑜𝑙𝑑!)

=
.5
.4
.1

Natalie Parde - UIC CS 421 41

Forward Trellis

• Incorporates all the information you’ll need
to implement the forward algorithm

• Observations
• Transition probabilities
• State observation likelihoods
• Forward probabilities from earlier

observations

Natalie Parde - UIC CS 421 42

Forward Step

Ot-2 Ot-1 Ot Ot+1

q1

q2

qN

…

𝛼t-2(1)

𝛼t-2(2)

𝛼t-2(N)

q1

q2

qN

…

𝛼t-1(1)

𝛼t-1(2)

𝛼t-1(N)

qj

𝛼t(j) = ∑! 𝛼"#$(𝑖)𝑎!%𝑏%(𝑜")

𝑏,(𝑜-)

𝑎.,

𝑎",

𝑎!,

q1

q2

qN

…

Natalie Parde - UIC CS 421 43

Forward Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

44

Forward Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

45

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

46

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h
P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

47

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

48

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

𝛼2(c) = .32 * .15 + .02 * .30 = .054

𝛼2(h) = .32 * .14 + .02 * .08 = .0464

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

49

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(c) = .054

𝛼2(h) = .0464

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

50

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(c) = .054

𝛼2(h) = .0464

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝛼3(h) = .0464 * .28 + .054 * .16 = .021632

𝛼3(c) = .0464 * .03 + .054 * .06 = .004632

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

51

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(c) = .054

𝛼2(h) = .0464

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝛼3(h) = .0464 * .28 + .054 * .16 = .021632

𝛼3(c) = .0464 * .03 + .054 * .06 = .004632

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝛼 = .021632 + .004632 = 0.026264

52

We’ve so far
tackled one
of the
fundamental
HMM tasks.

• What is the probability that a sequence
of observations fits a given HMM?

• Calculate using forward probabilities!
• However, there are still two remaining

tasks to explore….

Natalie Parde - UIC CS 421 53

This
Week’s
Topics

Natalie Parde - UIC CS 421 54

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

Decoding
• Given an observation sequence

and an HMM, what is the best
hidden state sequence?

• How do we choose a state
sequence that is optimal in some
sense (e.g., best explains the
observations)?

• Very useful for sequence
labeling!

Natalie Parde - UIC CS 421
55

Decoding

• Naïve Approach:
• For each hidden state sequence Q, compute P(O|Q)
• Pick the sequence with the highest probability

• However, this is computationally inefficient!
• O(NT)

Natalie Parde - UIC CS 421
56

How can
we decode
sequences
more
efficiently?

• Viterbi Algorithm
• Another dynamic programming algorithm
• Uses a similar trellis to the Forward algorithm

• Viterbi time complexity: O(N2T)

Natalie Parde - UIC CS 421
57

Viterbi Intuition

• Goal: Compute the joint probability of the observation sequence together with the
best state sequence

• So, recursively compute the probability of the most likely subsequence of
states that accounts for the first t observations and ends in state qj.

• 𝑣$ 𝑗 =	 max
)",)#,…,)$%#

𝑃 𝑞,, 𝑞", … , 𝑞$'", 𝑜", … , 𝑜$, 𝑞$ = 𝑞(|𝜆

• Also record backpointers that subsequently allow you to backtrace the most
probable state sequence

• 𝑏𝑡$(𝑗) stores the state at time t-1 that maximizes the probability that the
system was in state qj at time t, given the observed sequence

Natalie Parde - UIC CS 421
58

Formal Algorithm
create a path probability matrix Viterbi[N+2,T]

for each state q in [1,…,N] do:
 Viterbi[q,1] ← a0,q * bq(o1)
 backpointer[q,1] ← 0
for each time step t in [2,…,T] do:
 for each state q in [1,…,N] do:
 𝑣𝑖𝑡𝑒𝑟𝑏𝑖[𝑞, 𝑡] ← max

&/∈[#,…,+]
𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞-, 𝑡 − 1 ∗ 𝑎&/,& ∗ 𝑏&(𝑜.)

 𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟[𝑞, 𝑡] ← argmax
&/∈[#,…,+]

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞-, 𝑡 − 1 ∗	𝑎&/,& ∗ 𝑏&(𝑜.)

bestpathprob ← max
&/∈ #,…,+

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞′, 𝑇
bestpathpointer ← argmax

&/∈ #,…,+
𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞′, 𝑇

Natalie Parde - UIC CS 421 59

Seem
familiar?

• Viterbi is basically the forward
algorithm + backpointers!

• Instead of summing across prior
forward probabilities, we use a max
function

Natalie Parde - UIC CS 421
60

Viterbi Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

61

Viterbi Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

62

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

63

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h
P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

64

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

65

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

𝑣2(c) = max(.32 * .15, .02 * .30) = .048

𝑣2(h) = max(.32 * .14, .02 * .08) = .0448

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

66

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝑣2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

67

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝑣2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝑣3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

68

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝑣2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝑣3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏	= max(.01254, .00288) = .01254

69

Viterbi Backtrace

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝑣2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏	= max(.01254, .00288) = .01254

70

Viterbi Backtrace

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝒗2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏	= max(.01254, .00288) = .01254

71

Viterbi Backtrace

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝒗1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝒗2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏	= max(.01254, .00288) = .01254

72

Viterbi Backtrace

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝒗1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h|
sta

rt)
 *

P(3|
h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝒗2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏	= max(.01254, .00288) = .01254

73

The Viterbi algorithm is used in many
domains, even beyond text processing!
• Speech recognition

• Given an input acoustic signal, find the most likely sequence of words or
phonemes

• Digital error correction
• Given a received, potentially noisy signal, determine the most likely

transmitted message
• Computer vision

• Given noisy measurements in video sequences, estimate the most likely
trajectory of an object over time

• Economics
• Given historical data, predict financial market states at certain timepoints

Natalie Parde - UIC CS 421 74

This
Week’s
Topics

Natalie Parde - UIC CS 421 75

Tuesday

N-gram language
modeling
Evaluating LMs
Improving n-gram LMs

Thursday

Hidden Markov Models
Forward Algorithm
Viterbi Algorithm
Forward-Backward
Algorithm

Finally …how do we train HMMs?

• If we have a set of observations, can we learn the parameters
(transition probabilities and observation likelihoods) directly?

Natalie Parde - UIC CS 421 76

3 1 3
2 1 3
3 3 3
3 2 2
1 1 2

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

Forward-Backward Algorithm

• Special case of expectation-maximization (EM) algorithm
• Input:

• Unlabeled sequence of observations, O
• Vocabulary of hidden states, Q

• Output: Transition probabilities and observation likelihoods

Natalie Parde - UIC CS 421 77

How does
the algorithm
compute
these
outputs?

78

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Iteratively estimate the counts for
transitions from one state to
another

• Start with base estimates for aij
and bj, and iteratively improve
those estimates

• Get estimated probabilities by:
• Computing the forward probability

for an observation
• Dividing that probability mass

among all the different paths that
contributed to this forward
probability (backward
probability)

Backward Algorithm

79

N
atalie P

arde - U
IC

 C
S

 421

• We define the backward probability as follows:
• 𝛽8 𝑖 = 𝑃(𝑜8A4, 𝑜8AB, … , 𝑜C|𝑞8 = 𝑖, 𝜆)
• Probability of generating partial observations from time t+1 until

the end of the sequence, given that the HMM 𝜆	is in state i at time t
• Also computed using a trellis, but moves backwards instead

Backward Step

Ot-1 Ot Ot+1

q1

q2

qN

…

q1

q2

qN

…

𝛽t+1(1)

𝛽t+1(2)

𝛽t+1(N)

qi

𝛽t(i) = ∑,:!. 𝛽-;!(𝑗)𝑎<,𝑏,(𝑜-;!)

𝑏,(𝑜-)

𝑎<.

𝑎<"

𝑎<!

q1

q2

𝑏.(𝑜-;!)

𝑏"(𝑜-;!)

𝑏!(𝑜-;!)

Natalie Parde - UIC CS 421 80

𝛽= 𝑖 = 1

For the expectation step of the forward-backward
algorithm, we re-estimate transition probabilities and
observation likelihoods.

• We re-estimate transition probabilities, aij, as follows:
• Let 𝜁! 𝑖, 𝑗 = "!($)&"#'#((!$%))!$%(*)

∑#&%
' "!($))!(*)

• Then, B𝑎%! =
expected	#	transitions	from	state	𝑖	to	state	𝑗

expected	#	transitions	from	state	𝑖 = ∑>?@AB@ 3>(%,!)
∑>?@AB@∑C?@

D 3>(%,6)

• Check out the course textbook (Appendix A) for an in-depth discussion of how the
numerator and denominator above are derived!

Natalie Parde - UIC CS 421 81

Re-Estimating Observation Likelihood
• We re-estimate bj as follows:

• Let 𝛾. 𝑗 = 7>(!)8>(!)
7A(&E)

• Then, P𝑏! 𝑣6 = expected	#	of	times	in	state	𝑗	and	observing	symbol	9C
expected	#	of	times	in	state	𝑗 =

∑>?@	s.t.	F>?GC
A :>(!)

∑>?@A :>(!)

Natalie Parde - UIC CS 421 82

Putting it all together, we have the
forward-backward algorithm!
initialize A and B
iterate until convergence:

 # Expectation Step
 compute 𝛾8(𝑗) for all t and j
 compute 𝜁8(𝑖, 𝑗) for all t, i, and j

 # Maximization Step
 =𝑎HI =

∑$&#'%# J$(H,I)
∑$&#
'%# ∑(&#

) J$(H,K)

 >𝑏I 𝑣K =
∑
$&#	s.t.	+$&,(
' L$(I)

∑$&#
' L$(I)

 for the symbol 𝑣K in the vocabulary

Natalie Parde - UIC CS 421 83

Summary:
Hidden
Markov
Models

• HMMs are probabilistic generative models for
sequences

• They make predictions based on underlying hidden
states

• Three fundamental HMM problems include:
• Computing the likelihood of a sequence of

observations
• Determining the best sequence of hidden states

for an observed sequence
• Learning HMM parameters given an observation

sequence and a set of hidden states
• Observation likelihood can be computed using the

forward algorithm
• Sequences of hidden states can be decoded using

the Viterbi algorithm
• HMM parameters can be learned using the forward-

backward algorithm

Natalie Parde - UIC CS 421 84

	N-Gram Language Models and HMMs.pdf
	Hidden Markov Models

